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An interactive method is proposed for the solution of two-dimensional, laminar flow fields 
with identifiable regions of recirculation, such as the shear layer driven cavity flow. The 
method treats the flow field as composed of two regions, with an appropriate mathematical 
model adopted for each region. The shear layer is computed by the compressible boundary 
layer equations, and the slowly recirculating flow by the incompressible Navier-Stokes 
equations. The flow field is solved iteratively by matching the local solutions in the two 
regions. For this purpose a new matching method utilizing an overlap between the two 
computational regions is developed, and shown to be most satisfactory. Matching of a, v, as 
well as au/ay is amply accomplished using the present approach, and the stagnation points 
corresponding to separation and reattachment of the dividing streamline are computed as part 
of the interactive solution. The interactive method is applied to the test problem of shear layer 
driven cavity. The computational results are used to show the validity and applicability of the 
present approach. 

INTRODUCTION 

This paper proposes a new interactive two-layer method for computation of two- 
dimensional flow fields consisting of shear layer flowing over a region with 
significant recirculation. Such flows are typically characterized by transition between 
a high speed, compressible outer layer and a region containing fluid in slow, recir- 
culatory motion. To compute a solution to such flow field one may apply the most 
general mathematCca1 model valid in the whole region, usually the set of compressible 
Navier-Stokes equations. Alternatively, a simplified, zonal model may be used. 

The interactive approach presented in this paper is based on dividing the flow field 
into two regions, in each of which an appropriate mathematical model is used. Thus, 
the parabolic boundary layer equations of compressible, laminar flow are to be solved 
in the boundary layer/shear layer region. This region is assumed to be thin in order 
for the boundary layer approximation to be valid. 

Within the region of reversed flow, the elliptic, incompressible Navier-Stokes 
equations are used. These constitute a valid model for the slowly recirculating flow 
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encountered there, capable of dealing with stagnation points encountered at 
separation and reattachment of the diving streamline. 

The continuity of solution must be assured between the two regions by rnat~b~~~ 
the flow variables at the interface. For this purpose, a new matching model, rnaki~~ 
use of partial overlap between the two computational regions is developed. As will be 
shown, the overlap facilitates matching not only of the two velocity components, but 
of &lay as well. Furthermore, the present model aliows the use of the seeon 
order-accurate central difference scheme for updating the boundary conditions, as 
these are always computed at internal points of the adjoining region. consequently, 
no assumptions need to be made concerning the dividing streamline, which, together 
with its stagnation points, emerges naturally from the solution 

The interactive approach offers several advantages over the methods employing the 
general Navier-Stokes equations for solution of the total flow fieid. For instance, 
using the parabolic boundary layer equations, the limitations on the field size and cell 
Reynolds number are avoided in the shear layer, and no need exists for assuming the 
outflow boundary conditions. Furthermore, the interactive methods in general req~~~~ 
significantly smaller computer processing time as well as core space, making their use 
economically preferable. 

The interactive model developed in this paper is applied to the problem of shear 
layer driven cavity flows in which the free stream is supersonic. The simplicity of 
geometry as well as its relevance to various aerodynamic problems make cavity a 
suitable test configuration for the present model (Fig. 1). The computational resuks 
are used to show validity and merits of the present approach as a method f5’or 

computation of flow fields with significant recirculation. 
Although the cavity geometry is a standard test case used for validation of 

methods, few works were found in literature addressing the problem of the shear layer 
driven cavity. Briefly, Mehta and Lavan [6] and O’Brien [7] obtained Navier- 
solutions to the flow field in a channel containing a cavity in the lower wall. 
and Florsheim [ 111 developed a simplified model for the shear layer driven cavity 
flow based on assuming a straight dividing streamline having its stagnation points at 

BOUNDARY 

FIG. 1. Geometry and coordinate systems for the kiteractive shear layer-cavity calculation. 
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the two convex corners. As will be shown, the present method is free from such 
restrictions. A thorough experimental treatment of the flow inside rectangular cavities 
was presented by Charwat et al. [4,5]. This work also shows some indications of 
periodicity in cavity flows, which was recently the subject of numerical study by 
Borland [l], who used an inviscid flow model for this purpose. This unsteady 
behavior of the cavity flows is indicated in a growing number of experimental works, 
focusing on the acoustic aspect of the problem. 

However, if the unsteadiness is dynamically weak in comparison with the super- 
sonic free stream, the mean geometrical characteristics of the cavity may not be 
strongly influenced by the internal structure of the flow. For this reason, steady 
analyses of base flows are successful in predicting the base pressure. Likewise, the 
present model focusing on the interaction of the shear layer with the recirculating 
cavity flow will be restricted to the steady state. Since the problem of joint solution 
for mathematically parabolic and elliptic regions is considered, a constraint of zero 
streamwise pressure gradient will be imposed in the test cases. The interaction with 
the outer flow, using the present approach, has been shown to be feasible by Brandeis 
PI. 

MATHEMATICAL FORMULATION OF THE FLOW IN THE Two LAYERS 

For the shear layer, the governing equations of the compressible, laminar boundary 
layer, non-dimensionalized by the free stream reference quantities are 

Momentum 

au pug+p+-Jg+j+-$ Q-j, ( 1 

Energy 

aT c?T dp 1 3 
p”%+pv~=Udx+RePr ay 

(1) 

(2) 

Continuity 

(3) 

In addition, the equation of state and the viscosity relation are defined, respectively, 
as 

p = [(y - 1)M;]“.76 T’.“j. (5) 
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Equation (5) arises from the power law relation for viscosity, in which the 
temperature ratio is raised to the power 0.76 after Chapman [J). 

The boundary conditions along the outer edge of the viscous Iayer are found from 
the following relations compatible with the external flow 

while the conditions on u and v along the interface with the cavity are obtains 
through matching, with adiabatic “surface” (X/@I = 0) assumed along the line 
joining the two convex corners of the cavity (CD in Fig. 2). This line, along which 
the boundary conditions for the shear layer are specified, was found, for the cases 
considered, to be not far removed from the dividing streamline. 

The system of equations (l)-(5) together with the boundary conditions is solv 
downstream of the initial station. The computational region is taken to extend in t 
lateral direction high enough so that the velocity and temperature gradients au/@ and 
aT/t?y can be neglected at the outer boundary. 

The numerical solution in the viscous layer is obtained by replacing the non~~~~a~ 
partial differential equations with a set of linear difference equations, as done by 
Reyhner et al. [8]. The solution obtained at each step from the linear difference 
equations is used to calculate an improved solution at that step through iteration, 
until the differences between flow variables for two successive iterations are as smah 
as desired. 

The recirculating flow is contained in the present case by a rectangular e 
bounded on three sides by no-slip walls. Along the fourth, open boundary, the 
merges with the shear layer which through the action of viscous stresses provides the 
driving force for the-recirculation. For small cavities (L N MN O(6)) the ~t~~~~~ted 
recirculation velocities are in the low subsonic range even for moderate su~erso~~~ 

BOUNDARY LAYER 

CALCULATION 

A r, , $ SPECIFIED 

CALCULATION 

FIG. 2. Schematic of the overlapping regions used for matching 
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Mach numbers in the outer flow. Consequently, computation of the cavity flow is 
carried out with the incompressible Navier-Stokes equations. As a further conse- 
quence of the low recirculation velocities, the density and velocity fields are assumed 
to be only weakly coupled, and the energy equation is not considered at the present 
stage. The fluid within the cavity is thus assumed to be in thermal equilibrium with 
the wall, allowing the adiabatic boundary condition to be used at the interphase for 
the shear layer. The energy equation could be included iteratively in the present recir- 
culating flow model if the particular problem required this. In such case, an 
additional matching condition, relating to temperature, would have to be imposed. 

Incompressible Navier-Stokes equations written in the vorticity-stream function 
form and normalized by cavity length (L,), typical velocity (U,) and characteristic 
density and viscosity, are 

x -&&-v%T+-!&-C=~, at ay 
aw -=v=y-4. at! 

(8) 

(9) 

t’ in Eq. (9) can be regarded as a non-physical iteration time. Only the converged 
result (steady state) is of interest. The boundary conditions at the three no-slip walls 
are 

w  = 0, 

4 = a2w/ay* 
[ = a$/a? 

along horizontal wall, 

along vertical walls. 

w  and c along the fluid interface boundary are determined by matching and will be 
discussed later, together with the matching method. 

Equations (8) and (9) are discretized using the fully explicit, second order accurate 
Forward Time-Center Space (FTCS) numerical scheme. The finite difference 
equations are obtained, in their conservative form, by directly substituting the 
appropriate expressions for the first and second order derivatives which are of the 
form 

af J;:+l,j-A--I,j 

ax" 2Ax y 

atf .fif;:+l,j 
s= 

+.f-l,j- 2J,j 

(Ax)* 

into the governing equations (8) and (9). Similar expressions are obtained for aflay 
and a2flay2. df represents the dependent variables.) 
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The boundary condition for [ at the horizontal wall is discretized by writing the 
Taylor series expansion for w at the first grid point away from the wail 

then noting that @/ay(, = 0 and substituting the result into the boundary condition 
to give 

Similar results are obtained for vertical walls. 
The convex corners, which are singular points in both the boundary layer and the 

Navier-Stokes formulations, did not present a problem in the numerical solutions 
used in the two regions. The solution for the shear layer was confined to the region 
above the line joining the two corners and thus it was suff’cient to specify u = t’ = 0 
at those two points. For the Navier-Stokes solution, the physical corners (C and I) in 
Fig. 2) were assigned the values of vorticity found from the no slip condition 
<=a’w/Zy*, as for all other points along the wall. The “comers” of the 
computational region (A and B in Fig. 2) also presented no difficulty, as the vorticity 
there was uniquely determined from the shear layer solution. 

Although the Reynolds number limit for stability associated with the present 
approach, is only somewhat higher than 100, it proved sufftciently high for the 
modest size cavities considered in this study. 

SHEAR LAYER-RECIRCULATING FLOW ISTERACTION 

The equations of motion for the shear layer (Eqs. (l)-(5)) and for the recirculating 
flow (Eqs. (8), (9)) are to be solved under the constraints imposed by matching. 

It is recalled that in formulation of the mathematical models for the shear iayer 
and for the recirculating flow, two different sets of normalization factors were used. 
Consequently, two different scales are inherent in the interaction, involving two 
different Reynolds numbers: 

Re,, = PHL ~“I.bN 

Psr. 
for the shear iayer 

and 

for the cavity 

(multiple scale approach for interactive solutions has been discussed by Rom j lo]). 
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The geometry of the matching model adopted in this work is illustrated in Fig. 2. 
The important, innovative feature of this model is the presence of the overlap region 
ABCD between the domains of shear layer and recirculating flow computation. There 
are now seen to be two matching boundaries, AB and CD, defining the matching 
region in which the solution undergoes “transition” between the two fields of com- 
putation. 

The upper matching line, AB, is contained within the region where flow is 
calculated by the boundary layer equations. It is also the upper boundary for the 
Navier-Stokes calculation of the cavity flow inside the rectangle ABFE. Vorticity, <, 
and stream function, IV, are then calculated within the shear layer using 

(11) 

All derivatives in the right-hand side of Eqs. (10) and (11) were computed from the 
shear layer using the second order-accurate central differences. I,Y is then obtained by 
numerical integration along the boundary of the following equivalent of Eq. (11) 

Wi+l,j --2y/i,j+ ~i-~,j=-~(AX)'. 

The integration is accomplished using the tri-diagonal procedure. The values of v at 
the two end points are easily obtained from the boundary layer solution. 

The lower matching line, CD, is analogously seen to lie within the Navier-Stokes 
computation region, from which, then, the velocities u and v are calculated and 
supplied as boundary conditions for the shear layer computation. The condition on u 
is specified at each grid point, while that on v is imposed at the mid-points between 
the nodes. This distribution of boundary conditions resulted in improved convergence 
characteristics of the solution when compared to computations in which u and v were 
both prescribed at the node points. 

Each time that boundary conditions are exchanged between the regions, their 
scaling has to be adjusted accordingly. 

The height of the overlap region is taken here as one grid interval in the transverse 
direction, though it need not be restricted as such. One criterion to be considered in 
adjusting the height of the overlap region is the validity of the incompressibility 
assumption for the flow within the cavity. 

It is noteworthy, that the present method does not require any assumption 
concerning the location of the stagnation points. These are obtained from the results 
of the calculation as part of the iterative solution. The location of stagnation points 
corresponds to the points of zero vorticity on the walls (i.e., where wall vorticity 
undergoes a change in sign). 
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FIG. 3. Flow diagram for the interactive shear layer-cavity caiculation. 

The interactive computation of the shear layer and the recirculating flow is carried 
out through iteration. Flow diagram for the procedure is presented in Fig. 3. Initi~~l~~ 
the boundary layer calculation is advanced to the beginning of the cavity region. 
Then for the first iteration, called sweep, the shear layer is computed over the span of 
the cavity until its end, under the familiar boundary layer conditions u = u = 0. The 
necessary calculations of [ and ly are made and these undergo the compatibility 
transformation before being supplied to the cavity region as boundary conditions. 

The cycle is continued with the calculation of the recirculating flow, and, couse- 
quently, of the new set of boundary conditions for the shear layer, thus completing 
the first sweep. For subsequent sweeps, the shear layer calculation is initiated at the 
beginning of the cavity region. This iterative process is continued until the rn~rn~~ 
difference between flow variables at two successive iterations is acceptably small. For 
the present purpose the interactive computation was stopped after the 20th sweep, at 
which point convergence was checked. 

The following expression was used for calculating the convergence error: 
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0 5 10 15 20 

NUMBER OF SWEEPS (SW) 

FIG. 4. Convergence characteristics for the shear layer-cavity calculation. AI = 0.4, 11 X 12 grid 
points, Re, = 5.4, Re,, = 10’. 

where f refers to the particular variable under scrutiny, and SW is the sweep number. 
The variation of the maximum error with the sweep number for the first 20 sweeps 
was calculated using Eq. (12) and the results are plotted in Fig. 4 for the cavity of 
& = 0.4. These results, which are typical of all aspects ratios considered, indicate 
that convergence to within 1% accuracy for both c and w  is obtained after the first 
ten sweeps. The stream function typically was slower in convergence compared to 
vorticity for all shear layer cavity flows computed, though the difference appears to 
diminish when the solution is allowed to proceed past the first 20 sweeps shown in 
Fig. 4. Interestingly, both variables showed similar convergence rates when a flow- 
through boundary was substituted for the lower wall of the cavity (EF in Fig. 2) 
indicating that the specific geometry rather than the method is responsible for the 
unequal convergence of w  and 5. 

APPLICATION OF METHOD AND RESULTS 

The results of applying the interactive method to the shear layer driven cavity 
flows whose geometry is illustrated in Fig. 1, are now presented. Configurations with 
cavities of several aspects ratios (A = HJL, = depth/span) ranging from 0.4 to 3.0 
were computed with the boundary layer Reynolds number of 10’ and 4 X 105. The 
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FIG. 5. Stream function contour maps for the interactive shear layer-cavity solution: A = 0.4, 
Re, = 5.4, Re,, = 105, Pr = 1, M, = 2.25, computed with two grid sizes: top--AX= 5 X LO-‘, 
AY J 4 x 10e4; bottom-M= 10e3, AY = 4 x 10A4. 

Reynolds number in the cavities considered varied between 5 and 21. For most cases 
considered, the non-dimensional boundary layer step size, Ax, was 10W3 and grid 
spacing in the lateral direction, Ay, was 4 X 1W4. The external stream Mach n~rnb~r 
was 2.25. The grid spacing for the cavity in both x and y directions was equal to the 
corresponding value for the boundary layer computation, when compared in the 
physical space. The lateral grid spacing used for the cavity flow computation was 
considered to be sufficiently fine since small cavities with H, 2: L, N O(6) were 

1.782 

Y  

0 

DATA10 DATA12 DATA? 1 

X 

FIG. 6. Stream function contour maps for cavity: Ai = 2.0, Re, = 5.4, Re,, = !@, i’r = 1. 
M, = 2.25. left-shear layer driven, middle-wall driven, inflow condition, right-wall driven, averaged 
velocity. 

581/40/2-10 
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FIG. 7. Stream function contour map for the interactive shear layer-cavity solution: LR = 1, 
Re, = 5.4, Re,, = lo’, Pr = 1, M, = 2.25. 

considered. A check was made, however, of the effect of reducing the streamwise 
spacing between the mesh points to see if dx = 10P3 was sufficiently small. For this 
purpose solutions were obtained for the configuration having LR = 0.4, ReBL = 10’ 
and Re, = 5.4, with Ax of low3 and 5 X 10P4. The resulting stream function maps are 
presented in Fig. 5 for comparison. The At,u was kept equal for both cases. 

An examination was made of the effect and importance of proper coupling between 
theeshear layer and the recirculating flow. This was accomplished through 
comparison of the shear-layer drive cavity flow computed using the present method, 
and the same cavity flow driven by a horizontal wall in motion along the straight line 
defined by the segment AB in Fig. 2. The latter solution was generated by the same 

0 .l .2 .3 .4 .5 .6 .7 .8 .9 1.0 
HORIZONTAL 

FIG. 8. Voticity contour map for the interactive shear layer-cavity solution: A = 1, Re, = 5.4, 
Re,, = lo’, Pr = 1, M, = 2.25. 
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FIG. 9. Streamwise velocity component distribution along the matching boundaries for the 
interactive shear layer-cavity solution: AZ = 1, Re, = 5.4, Re,, = lo’, Pr = 1, M, = 2.25. 

numerical model used for the shear layer driven cavity. Two definitions for the wall 
velocity were used: in one it was taken to be the average u along A3 in Fig. 2 taken 
from the shear layer solution; in the other, the value of u at point A within the skear 
layer was adopted, which then fixes the amount of mass flowing in through the ‘“slot” 
AC in Fig. 2 at the same value as computed using the interactive solution. 
comparison was carried out for the deep cavity of & = 2 and Re, = 5.4. Re,, was 
10”. The resulting stream function maps are shown in Fig. 6. Data IO, 11, and 12 
correspond, respectively, to the shear layer driven cavity, wall velocity comput 
from averaging and wall velocity taken from the point value. The streamline spacing 
is consistent for all three cases, but it should be noted that much smaller spacing is 
used for the secondary vortex in all three cases, than for the primary one. 

v/u, 
ALONG AB 

0.01 7 0, 
P 

L’ 

0 

-0.01 

FIG. 10. Transverse velocity component distribution along the matching boundaries for the 
interactive shear layer-cavity solution: A7 = 1, Re, = 5.4, Re,, = IO’, Pr = 1, M, = 2.25. 
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0 0.04 0.08 0.12 I I 

FIG. 11. Streamwise velocity profile in the recirculating flow and the shear layer, passing through 
the center of the vortex: AI = 1, Re, = 5.4, Re,, = IO’, Pr= 1, M, = 2.25. 

Next, a set of results for a typical case of Ai = 1, Re,, = IO5 and Re, = 5.4 is 
presented in Figs. 7 to 10. It consists of stream function map, equal vorticity contour 
map, and plots of u and ZI velocities in the matching region, respectively. A u-velocity 
profile through the cross section of this flow, passing through the center of the 
cavity’s vortex, is shown in Fig. 11. This case typically illustrates results for cavities 
with the dividing streamline separating and reattaching within the cavity. These 
stagnation points can be located from the vorticity plots by looking for the locations 
along the vertical walls where the vorticity function is zero (i.e., changes sign). For 
comparison, another case is presented, in which the dividing streamline separates and 
reattaches slightly outside of the cavity. This cavity, with & = 0.67, Re, = 8 and 

.l .2 .3 .4 .5 .6 .7 .8 .9 1.0 
HORIZONTAL 

FIG. 12. Stream function contour map for the interactive shear layer-cavity solution: Al = 0.667, 
Re, = 8.0, Re,, = 105, Pr = 1, M, = 2.25. 
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Re,, = 105, has the same depth but a 50% longer span than the other cases 
presented. The stream function map corresponding to this case appears in Fig. 12. 

The run-time for the typical case of 12 boundary layer steps per sweep with the 
Navier-Stokes field of 11 X 25 grid points (corresponding to & = 1 cavity), allowing 
for 20 sweeps and the initial calculation of the boundary layer. was about four 
minutes on IBM 370-168 computer, and about 50 set on a CDC 7600. 

DISCUSSION OF RESULTS AND EVALUATION OF THE METHOD 

The examination of the effect of reduction of grid spacing in Fig. 5 indicates that 
the grid size used in the computation of remainder of the results presented was 
sufficiently small. The only distinguishable difference is seen to be the resolution of 
the additional, highest value, streamline in the center of the vortex computed with the 
fine grid. Although indistinguishable in the plotted results, the location of the 
stagnation points did show a slight shift of about 0.1 Ay. 

Comparison of the results for shear layer driven cavity with those where moving 
wall was used (Fig. 6) not surprisingly show considerable discrepancy in the upper 
part of the flow. It is also seen that the mass inflow between the upper upstream 
corner and the streamline above is a controlling parameter affecting the recirculatory 
flow solution. However, even when the mass influx is held fixed (compare Data 10 
with Data 12), there is some sensitivity of the secondary flow to the actual 
distribution of driving velocities along the interphase. 

The location of the stagnation points of the dividing streamline is determined 
routinely by the Navier-Stokes formulation for recirculating flow, as was illustrated 
in Figs. 7 and 8. The method is also capable of handling cases where the dividing 
streamline stagnates outside the cavity region, such as in the case of a 50% longer 
cavity in Fig. 12. Since the stagnation points for this case fell within one grid point of 
the cavity, no adjustment of the Navier-Stokes region was needed. However, should 
the dividing streamline fall outside the region where the elliptic equations are solved, 
this region can be readjusted in size to contain fully the dividing streamline. This 
capability of the present method of routinely treating the stagnation points enhances 
its usefulness and is considered worthy of emphasis. 

The two-boundary matching method proved to be most satisfactory. This is seen 
by examining the graphs of the u and u components of velocity in the matching 
region shown in Figs. 9 and 10. Both u and u are successfully matched (identical 
values of the variables computed by the Navier-Stokes and boundary layer 
equations) along the lower matching line. Along the upper matching line, u velocity is 
matched to within fraction of one percent, but u shows a somewhat more significant 
mismatch. Thus it is concluded that both u and u are matched along cavity’s upper 
boundary, with &.L/+ also matched along that boundary. This continuity of the u 
velocity profile is clearly seen in Fig. 11. Furthermore, mass was conserved along the 
cavity’s upper boundary. These statements hold for all cases examined. 
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The wiggle in the v-velocity distributions along the matching line which appears at 
the upstream extreme in Fig. 10 was also found to be recurring in other cases. Its 
severity was found to be directly related to the magnitude of ZJ, and its cause is 
attributed to the step-like change in the velocities at the cavity’s leading edge arising 
from neglecting the upstream influence (i.e., u’p/dx) in the present model. 

CONCLUSIONS 

A new interactive method was presented for computation of flow fields consisting 
of regions in which parabolic and elliptic mathematical models are used. Application 
was made to the shear layer driven cavity flow. 

The method was shown capable of yielding uniform solutions to the flow fields 
considered, by successfully matching the flow variables U, U, and &lay along the 
cavity shear layer interface. The stagnation points presented no special problem, and 
their location was determined from the iterative solution and was not specified a 
priori. The computation time required for a converged solution was modest. 

Comparison of solution for the shear layer driven cavity with the corresponding 
case of cavity driven by a moving wall showed that proper mass influx is an essential 
factor in the reversed flow solution. It is inherent in the method presented in this 
paper, but is lacking if an approximation is used for driving the recirculating flow 
solution. 

Currently, the present method is being used for investigation of several aspects of 
shear layer driven cavity flows. 
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